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Our interest is the magnitude Γ  of the difference between the short 

sides of an irreducible Pythagorean triple. Thus 3,4,5 has Γ = 1. Triples 

such as 6,8,10 are rejected as having a common factor and thus reducible 

with nochange of shape of the triangle. What is the spectrum of this set? 

In Dickson’s terms, we have Γ = ∆o − ∆e . Here the odd and even 

indices are  

∆o = δo

2  and ∆e = 2δ 2 . Here δo  is any odd integer and δ  any integer 

co-prime to  δo . Dickson’s analysis gives x + ∆e = y + ∆o = z  so that Γ  is 

odd. 



Table 1 shows starting values of Λ = ∆e − ∆o  so that Γ = Λ .  

 

Table 1: Λ  values as a function of δ / δo  

20 799 791 X 751 719 679 631 X 511 439 

19 721 713 697 673 641 601 553 497 433 X 

18 647 X 623 599 X 527 479 X 359 287 

17 577 569 553 529 497 457 409 353 X 217 

16 511 503 487 463 431 391 341 287 223 151 

15 449 X X 401 X 329 281 X 161 89 

14 391 383 367 X 311 271 223 167 103 31 

13 337 329 313 289 257 217 X 113 49 -23 

12 287 X 263 239 X 167 119 X -1 -73 

11 241 233 217 193 161 X 73 17 -47 -119 

10 199 191 X 151 119 79 31 X -89 -161 

9 161 X 137 113 X 41 -7 X -127 -199 

8 127 119 103 79 47 7 -41 -97 -161 -233 

7 97 89 73 X 17 -23 -71 -127 -191 -263 

6 71 X 47 23 X -49 -97 X(133) -217 -289 

5 49 41 X -1 -31 -71 -119 X -239 -311 

4 31 23 7 -17 -49 -89 -137 -193 -257 -329 

3 17 X -7 -31 X -103 -151  X -271 -343 

2 7 -1 -17 -41 -73 -113 -161 -217 -281 -353 

1 1 -7 -23 -47 -79 -119 -167 -223 -287 -359 
δ / δo  1 3 5 7 9 11 13 15 17 19 

   X co-factor     Bold: recursor italic: special case 

 

Theorem: Γ(mod 8) = ±1 . 

For some δo  the next odd index is δo

2 + 4(δo + 1) . The second term is 

zero mod(8) since δo  is odd. For δo =1 we have ∆o(mod8) = 1 . Similarly for 

the even index, if δ  is odd ∆e(mod 8) = 2 × δ0

2 (mod 8) = 2  and for even 

integer ∆e(mod 8) = 2δe

2 (mod 8) = 0  proving the theorem for the difference of 

odd and even indices. 

Lemma. If p1, p2 are primes satisfying p(mld8)] ± 1  then any product 

also satisfies. Proof: write p1

m1 p2

m2 = 8n1 ± 1( )
m1

8n2 ± 1( )
m2  and thus possible 

members of Γ , where m, n are integers. 

Table 1 has no entry for 5 nor any multiple of 5. We can prove this 

in decimal notation by observing that ∆o  must end in 1, 5 or 9 whilst ∆e  

must end in 0, 2 or 8. The only difference yielding 5 or a multiple of 5 is 



between 0 and 5 and thus reducible. Thus although 25 satisfies the mod8 

test, it cannot appear since δ / δo  have 5 as co-factor and the triple is 

reducible. 

To generalise this, consider any prime p. For any multiples np 

appearing in δo,δ , the triple is reducible so we consider adjacent values 

np ± q , where q is integer 1, 2… up to (p-1)/2. Thus for p=3, in 

∆o = np ± 2q( )2
= np(np ± 4q) + 4q2  we have trios 1,3,5 then 7,9,11 and in 

∆e = 2 np ± q( )2
= 2np(np ± 2q) + 2q2  we have -1,0,1 then 2,3;4 then 5,6,7 etc.  

We define reseals over this range for the indices by subtracting the np 

terms so that we can define residuals 

 Re s(∆e ) = 2 q( )2
 and Res(∆o ) = 2q( )2

= 2 Re s(∆e )  

It is seen that the even index is its own residual in q counting from 

the np multiple. Correspondingly, the odd index residual is twice the even 

residual. Table 2 shows some q-values at low p. 

We see that 3 and 5 are not only absent from the set Γ  but so are 

their factors. 7, however, is present as a prime and a factor.  Similarly 11, 

13 and 119 are barred but 17 and 23 present. 

Consequently, 15 and 21 are absent but 49 and 7119 present. 

Readers may wish to extend the table or find a more general proof. 

 



Table 2. Residuals of indices 

±q
o
,qe  1 2 3 4 5 6 7 8 9 10 11 

Re ∆o

Re ∆e

 
4 

2 

16 

8 

36 

18 

64 

32 

100 

50 

144 

72 

196 

98 

256 

128 

324 

1162 

400 

200 

484 

242 
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2 

5 
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7 

9 
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1 

6 

9 

10 

3 

7 

5 

8 

4 
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mod 

13 

4 

2 

3 

8 

10 

5 

12 

6 

9 

11 

1 

7 : 

Ditto 

… 

    

mod 

17 

4 

2 

16 

8 

2 

1 

13 

15 

15 

16 

8 

4 

9 

13 

1 

9 : 

ditto 

… 

  

mod 

19 

4 

2 

16 

8 

17 

18 

7 

13 

5 

12 

11 

15 

6 

3 

9 

14 

1 

10 : 

ditto 

… 

 

mod 

23 

4 

2 

16 

8 

13 

18 

18 

9 

8 

4 

6 

3 

12 

6 

3 

13 

2 

1 

9 

16 

1 

12 : 

Italics: valid factor 

 

Going back to the analysis of 5 in decimal numbers, Table 3 shows 

the last digit in 2p-numbers for the indices for p=3, 5 and 7. We see that 

for 3 and 5, no indices match to allow 3 or 5 to be a factor of Γ  except 

reducible p and 2p. For p=7, however, every index has multiple matches. 

 

Table 3. Final digit in 2p arithmetic 

p 

3 
Final ∆o  

Digit ∆e  

1 

2 

3 

2 

1 

0 

 

2 

 

2 

 

0 

        

 

5 
Final ∆o  

Digit ∆e  

1 

2 

9 

8 

5 

8 

9 

2 

1 

0 

 

2 

 

8 

 

2 

 

2 

 

0 

    

 

7 
Final ∆o  

Digit ∆e  

1 

2 

9 

8 

11 

4 

7 

4 

11 

8 

1 

2 

1 

0 

 

12 

 

8 

 

2 

 

4 

 

8 

 

2 

 

0 

 



Although I have no rigorous proof, we may reasonably expect that 

no prime p where p(mod 8) ≠ ±1 can be present of itself or as a factor in Γ . 

If it did, there would be some matching q-cells in the residuals mod p so 

that some multiple of p would be present. Given the double infinite series 

in m, n it would seem likely that p itself  or some odd power of p would 

not appear. But this would violate the mod(8) restriction and thus it is 

reasonable to say there are no matching q-cells for such p. 

 

Fourier decomposition 

We can say that the set Γ  can be represented as a Fourier 

decomposition into fundamentals consisting of those primes p such that 

p(mod 8) = ±1 and all possible harmonics and overtones, powers and 

products of these fundamentals. 

Somewhat fancifully, we may relate these numbers to the numbers 

in a musical scale. We need seven notes in say the key of C-major before 

returning to the octave C. But to play the harmonic minor we need an 

eighth note, E-flat in the key of C. Disingenuously we say there are 8 

distinct notes in our mixed scale. There is nothing new in the harmonics 

taken modulo 8. In our key of C we have B and D corresponding to 

p(mod 8) = ±1. B to D sounds  a minor third while D up to B is a major 

sixth. Can we say then that we can hear the “music of the spheres” 

resounding in our set Γ ? 

 

Coda 

I am conscious I have not given a rigorous proof and I would be 

glad to hear of improvements. Perhaps a useful computer exercise would 

be to extend Table 3 and check the claim. I may mention that If p is odd 

but fails the mod8 test, then its square passes the test but all odd powers 

fail. This may lead to a proof but certainly makes the result more likely. 

A different approach is Pell recursion and a further computing 

opportunity. In Dickson’s formalism we put 

ψ =
δo

δ







, L =

1 2

1 1







,ψ n+1 = Lψ n . 

Under this operation Γ is invariant and Λ  alternates in sign. Thus 

in Table 1, we can trace the sequence 1, -1,1 from the origin. The inverse 

operator L
−1 =

−1 2

1 −1







 retraces the sequence as long as δ < δo < 2δ  so that 

a wedge appears in the first quant defined by 



δo = δ + 1

δo + 1 = 2δ
. 

Any Γ  within the wedge has a precursor to the left. Ultimately 

there is a source cell outside the wedge. The columns and rows are 

monotonic so, for example, a p-value of 3 would appear within the wedge 

after δo = 3  and appear in an external cell in column δo = 1 or 3 . Since it 

does not, we have proof that 3 is not a member of the set. This can be 

computer generalised. We can also show that every source cell (except 1 

at the origin) has its counterpart of opposite sign, using rotation operators 

. R+ =
−1 2

−1 1







 and R- =

1 −2

1 −1







.  

 


