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When my daughter Shelagh was young, we explored Pythagoras’ 

Theorem and in particular the paradigm right-angled triangle with sides 

of length 3,4,5. This triangle is of particular interest because its sides are 

whole numbers. This has practical implications; for example a surveyor 

can construct a right angle using a length of rope marked off in sections 

of length 3,4 and 5 units. 

Our 3,4,5 paradigm is the first in an infinite series of integer right-

angled triangles with sides of increasing length. The sides of such a 

triangle form what is called a Pythagorean triple (three positive integers 

x, y, z such that x
2
 + y

2
 = z

2
). 

Naturally all such triangles became “Shelagh’s Triangles”. Now I 

have five granddaughters who have been exposed to the same joy and I 

have thought rather more about how to classify and generate such 

Pythagorean triples, an approach I offer here in the form of an index to 

sequences of such triples. This leads to a highly accurate estimate of the 

square root of two. For those unfamiliar with the early, pre-Euclid proof 

of Pythagoras, I add instructions for making the “magic picture frame”. 

On further study I find that my approach is essentially that of 

Leonard Eugene Dickson, an American mathematician working in the 

1920’s, although my emphasis on the two index parameters allows an 

application to find the square root of two to higher and higher accuracy. 

The link is made later to Dickson’s method and the methods of Euclid 

and Plato to find Pythagorean triangles.
1
 

 

Sophie’s Triples 

A Sophie triple is a Pythagorean triple with no common factors – 

that is, a set of three irreducible integers that form the sides of a right-

angled triangle. We can start to explore the properties of Sophie triples. 

                                         
1
 Little is known of Pythagoras himself, living c. 550-450 BC. The 

standard proof is ct Euclid some centuries later. 
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Let the three sides of a right-angled triangle
2
 be called x, y and z 

where x,y,z are integer numbers (1,2,3, etc.) as big as you like but not 

infinite. The hypotenuse (the line opposite the right-angle) is always the 

third number z but x and y for the other sides can interchange. 

 
Figure 1: The Right-Angled Triangle with Sides x, y and z 

The theorem of Pythagoras says 

   x
2 + y

2 = z
2  

Young grandchildren will have to have this notation explained of 

course; see Figure 2 for a visualisation of the squares on the sides of the 

triangles. 

                                         
2
 Grandparents may have to explain “right-angle” in terms of four 

in a symmetric cross. 
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Figure 2: the squares on the sides of the triangle 

 

Our paradigm 3,4,5 then gives us 32 + 42 = 9 + 16 = 25 = 52  and 

satisfies Pythagoras, a valid Sophie triple. 

Obviously a multiple of a Pythagorean triple, such as 6, 8, 10, is 

also is a valid Pythagorean triple. But this gives us no new information; 

the triangle is the same shape and only the unit of length has been scaled 

by a factor of 2. Only if there is no such factor so that the triple is 

irreducible, will we call it a Sophie triple. How do we find more Sophie 

triples? 

I introduce the concept of an index ∆  for any Sophie triple; the 

index is the integer number to be added to either x or y to make z. Thus 

our paradigm (like all triples) has two indices: 

   ∆1 = 5 − 4 = 1 and ∆2 =5-3=2    

Since we have three numbers (the sides of the triangle) linked by one 

restriction (Pythagoras’ Theorem), we would expect to need two 

independent parameters. Can we prove that ∆1 and ∆2 are always 

different? 
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Figure 3: The indices ∆1 = z - x and ∆2 = z - y 

 

Theorem 1. Every Sophie triple has two distinct indices 

To prove this we assume the fact that the square root of two 2  is 

irrational and cannot be expressed as a ratio of finite integers. If there was 

but one index we would have x = y  and from Pythagoras’ theorem 

z / x = 2  which is impossible.  Our theorem is proven: since x ≠ y  a 

Sophie triple must have two distinct indices, which I will call an Emma 

pair. The theorem is true for all Pythagorean triples. 

Of course the closest we can have x and y is one apart and 

correspondingly adjacent indices one apart. We call such indices a 

Charlotte pair and finding such Charlotte pairs is a route to better and 

better estimates of 2 .  

But first we explore the families of triples using a particular index. 

We have an index (or Jeffery) equation 

y
2 = z

2 − x
2 = (x + ∆)2 − x

2 = 2∆x + ∆2  

From this relation, we can search for a perfect square to yield a 

valid y with fixed index and increasing x. 

For example, starting with ∆1 = 1 and x = 4, we find that y
2
 = 2.1.4 

+ 1 = 9, giving us y = 3 and rediscovering our 3, 4, 5 paradigm. 

∆1 = 2 and x = 3 gives us y
2
 = 2.2.3 + 2.2 = 16, which again yields 

our 3,4,5 paradigm. This is to be expected because for our 3,4,5 triangle 

the two indices are 5 – 4 = 1 and 5 – 3 = 2 and we have effectively 

exchanged ∆1 and ∆2. 

We can use the index equation to show that certain numbers are not 

represented in Sophie triples. Recollect that x ≠ y  and 0 < x,y < z. 

Suppose y=1 the equation cannot be satisfied: y
2 = 1 < 2x∆ + ∆2 . Suppose 
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y=2 then we have y
2 = 4 < 2x∆ + ∆2  since x>2. We return later to the 

question of further values absent from Sophie triples. 

 

Theorem 2. A Sophie (irreducible) triple is mixed parity: the three 

numbers cannot be all odd or all even. Correspondingly the hypotenuse z 

is odd and the two indices and the sides x, y are of mixed parity, one odd 

and one even. 

We assume some basic arithmetic properties of odd and even 

numbers, and note that the square of an integer has the same parity as the 

integer. Thus if x,y are indeed mixed parity then z
2
 is the sum of an odd 

and an even number, hence z
2
 is odd, z is odd and the two indices are of 

mixed parity. 

If x, y are both even, then z
2
 and z are also even and the triple is 

reducible so is not a valid Sophie triple – we can rule out this case. 

To rule out x,y both odd, we need a lemma. 

 

Lemma. Parity of the Sophie triple 

We seek to show that in a Sophie triple (an irreducible Pythagorean 

triple of positive integers) the hypotenuse is always odd and the other two 

sides are of mixed parity, one odd and one even. There are three cases: x 

and y both even, x and y both odd, and the case proposed. 

Suppose x and y are both even. Then each square and hence the 

sum of the squares contains a factor of four. Thus if this is a square 

number then z is even and the triple is reducible. 

Now consider x and y are both odd. First let us examine the 

remainder of such squares divided by 8, written in modulo notation as 

n(mod8). 

We can write the odd number as 2n - 1, where n is any integer.  

2n − 1( )2
= 4(n − 1)n + 1   

The leading term has a factor of 8 whether n is odd or even.  Thus 

the remainder modulo 8 of any odd square integer is 1. 

The square of any even integer (2n)2 = 4n
2  and has a factor of 4. 

Thus any even square number modulo 8 is either 0 or 4. 

Then if x and y were both odd z would be even. The two odd 

squares modulo 8 gives 2 but this is incompatible with the even square 

giving 0 or 4. Hence this case is ruled out. 
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We have shown therefore that the short sides x and y must be of 

opposite parity, one odd and one even, and the hypotenuse z is odd, as in 

our paradigm 3, 4, 5. We return later to the actual and admissible values 

of x, y and z. 

Furthermore, the indices are of mixed parity. Suppose we write 

z = x + ∆even . Then x is odd and y even; we may have x<y or x>y.  From 

the index equation 

 y
2 = ∆r (2x + ∆e )  

with odd x, 2 must appear in odd powers in the factors of the even 

index. 

 

Corollary. With opposite parity indices the odd index gives y odd, 

x even so the even index gives y even and x odd in the index equation. 

Our paradigms, 3,4,5 and 4,3,5 shows all these features, with 

indices ∆1 = 1, ∆2 = 2 and ∆1 = 2, ∆2 = 1. 

Each index value corresponds to an infinite series of Sophie triples. 

Tables 1 and 2 give the first few terms in the sequences corresponding to 

index = 1 and index = 2. There are some interesting patterns in these 

tables. For index ∆ = 1, y increases in steps of two. The complimentary 

index is seen to have an odd power of 2 and an even power of odd 

factors. For index ∆ = 2 , y increases in steps of four and the 

complimentary index is the square of odd numbers. Note also that from 

our index equation, for index = 1, y
2
 = 2x + 1. Similarly, for index = 2, y

2
 

= 4(x + 1). 

These two indices obviously have one triple in common, because 

we chose the indices 1, 2 from our paradigm: 3,4,5. A constructive proof 

follows that every Emma pair of indices leads to a Pythagorean triple. We 

also have a proof that there are no more than one such triple in common 

for any two indices. 
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Table 1 

Index ∆1 = z – x = 1 

 Table 2 

Index ∆1 = z – x = 2 

Sophie Triple 

(x, y, z) 

y
2
 = 2x + 1 

∆2 = z - y  Sophie Triple 

(x, y, z) 

y
2
 = 4(x + 1) 

∆2 = z - y 

4,3,5 2  3,4,5 1 

12,5,13 8  15,8,17 9 

24,7,25 18  35,12,37 25 

40,9,41 32  63,16,65 49 

60,11,61 50  99,20,101 81 

84,13,85 72  143,24,145 121 

112,15,113 98  195,28,197 169 

144,17,145 128  255,32,257 225 

 

Theorem 3. Two indices have not more than one common triple 

Suppose there was another common triple. Let the first common 

triple be x, y, z, and the second be x', y', z'. Since the indices are common, 

we can say 

z' – x' = z – x and z' – y' = z – y 

rearranging, we see that 

z' – z = x' – x and z' – z = y' – y 

hence 

z' – z = x' – x = y' – y = n 

Applying Pythagoras’ theorem to the seconds triple, we see that 

(z + n)2 = (x + n)2 + (y + n)2  and hence 2zn = 2xn + 2yn + n
2 . For any right-

angled triangle, the hypotenuse z < x + y so the equation is invalid for 

positive n. If n = 0 the equation is valid but we have merely recreated the 

original triple. If n is negative the equation may be satisfied. But then the 

original triple would be a same-indices triple with a positive n, which we 

have already refuted. 

Other trends seen in Tables 1 and 2 show x/y decreasing with 

higher terms, the corresponding angle becoming more acute. But we see 

it is possible to have at the first term, either x < y or x > y. 
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Valid Indices 

Rather than study all possible indices and their sequence of triples, 

it is helpful to find limitations that make indices invalid because they lead 

to factors that make the triple reducible. The general index equation is 

  y
2 = 2x∆ + ∆2 = ∆(2x + ∆)  

Suppose ∆  is even. We can then extract a further factor of two. If 

the factors of two in ∆  are odd then 2 ∆  will have the form of an odd 

number times two to an odd power. Then the square root to give integer y 

must take a further factor of two from x+ ∆  so that x itself must be even. 

We would then have z=x+ ∆  even and a common factor of two making 

the triple reducible. Thus two must occur in the index only to an odd 

power. 

More generally a valid index may nevertheless have triples with a 

particular x-value that makes them reducible by virtue of a common 

factor in x,∆ . Thus not only do we rule out even x in the ∆ = 2  sequence 

but, for example, x=36 in the ∆ = 9  sequence where the index equation is 

y
2 = 9(2x + 9)  

and would give 27,36,45 reducible to 3,4,5. 

Turning to the index itself, consider odd factors in the index. These 

must occur with even powers or else a perfect square for y
2  would 

require x must contain a further factor and thus common factor with y and 

z and hence be reducible. 
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 Table 3 shows the valid indices from 1 to 20. 

 

Table 3. Valid Indices up to 20. 

Valid index Factors  Invalid index factors 

1 1    

2 2    

   3 3 

   4 22  

   5 5 

   6 2 × 3  

   7 7 

8 23     

9 32     

   10 2 × 5  

   11 11 

   12 22 × 3  

   13 13 

   14 2 × 7  

   15 3 × 5  

   16 24  

   17 17 

18 2 × 32     

   19 19 

   20 22 × 5  

Note that 1 is also a factor of all indices. 

Thus valid indices are relatively rare. I leave the reader to validate 

indices 25, 32, 49, 50 and to note Charlotte pairs of indices: 1,2; 8,9; 

49,50; 288,289. 

What are the values of x, y that occur in a Sophie triple, an 

irreducible Pythagorean triple? Values 1 and 2 can be ruled out 

immediately by observing for x
2 = z

2 − y
2  the squares of adjacent integers 

are at least three apart: (n + 1)2 − n
2 = 2n + 1 . To go further and rule out the 
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lacuna series 2(2n-1), starting therefore at 2, 6, 10, requires deeper study 

of valid indices and the construction of explicit solutions for Sophie 

triples. 

  

Theorem 4. A valid odd index has the form ∆ = δ 2  where δ  is an 

odd integer. The hypothesis sharpens a previous result proving x even 

and says y = 2nδ + ∆ . The index equation shows y > ∆  and gives 

 4n
2∆ + 4nδ∆ = 2x∆ . Our solutions are then, for valid odd 

index, 

 

x = 2n(n + δ )

y = 2nδ + ∆

z = 2n(n + δ ) + ∆

  

x
2 = 4n

2 (n + δ )2

y
2 = 4n

2∆ + 4nδ∆ + ∆2

z
2 = 4n

2 (n + δ )2 + 4n(n + δ )∆ + ∆2

 

so that we have solutions and can reasonably say these are the 

general solutions. If we call this odd index ∆1,δ1  then the complementary 

even index is given by 

   ∆2 = z − y = x + ∆1 − y = 2n
2  

This is independent of ∆1  so that all valid sequences for an odd 

index start with complementary index 2. The corresponding series for 

valid odd indices is 

  ∆1 = (2n − 1)2 = δ1

2  and write ∆ 2 = 2δ2

2  

where the δ  are integers and δ 1  odd. Then 

 x + ∆1 = z == y + ∆2  

giving 

    

x = 2δ1δ2 + ∆2 = 2δ 2 (δ1 + δ2 )

y = 2δ1δ2 + ∆1 = δ1(δ1 + 2δ2 )

z = 2δ1δ2 + ∆1 + ∆2 = (δ1 + δ2 )2 + δ 2

2

   

and for a Sophie primitive triple δ1,δ2  (an Amelie pair) must have 

δ1  odd and must be coprime, with no common factors. This is essentially 

the method Dickson used. 

 

The methods of Plato and Euclid 

Classically we have Euclid’s formulae where m and n are integers, 

m>n: 
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x = m
2 − n

2

y = 2mn

z = m
2 + n

2

  

x
2 = m

4 − 2m
2
n

2 + n
4

y
2 = 4m

2
n

2

z
2 = m

4 + 2m
2
n

2 + n
4

= m
2 + n

2( )
2

 

The double infinite series gives all possible Pythagorean triples and 

the restriction to m,n coprime and opposite parity ensures primitive 

Sophie triples for distinct shapes. We have ∆2 = 2n
2  and ∆ 1= m − n( )2

. 

In contrast, the method of Plato assumes x to be even, 2n say. Then 

x = 2n

y = n
2 − 1

z = n2 + 1

  

x
2 = 4n

2

y
2 = n

4 − 2n
2 + 1

z
2 = n

4 + 2n
2 + 1

 

and alternate terms can be reduced by a factor of two to give only 

Sophie triples of index 1 and 2. 

 

Corollary. We can now prove that the lacuna series 2(2m+1) does 

not appear in the general solution for x = 2n(n + δ )  when the index is odd 

Consider δ = 1  and m integer. There is no solution m for any n of the 

equation n2 + n = 2m + 1  since the right=hand side is odd but the left-had 

side is even. More generally consider n
2 + nδ = 2m + 1and again with odd 

index no solution exists. 

 

Charlotte pairs of adjacent indices 

Sophie triples can give approximations for irrational square roots 

in the form z/x and z/y. The approximation for 2  based on a Charlotte 

pair of adjacent valid indices is particularly powerful since one triple 

gives both upper and lower bounds. First we note that the most accurate 

approach to 2  comes when x and y are adjacent, a Rosie pair. A 

necessary condition is that the triple has a Charlotte pair of indices. 

Lemma 3: A unique Rosie pair of adjacent x,y exists for every 

Charlotte pair of adjacent indices.  That is, the sequences corresponding 

to the two indices have a unique common triple; that this is unique has 

been shown more generally already. And if a triple with a Rosie pair of 

adjacent x,y exists in one Charlotte index sequence it must exist in the 

other Sophie sequence. Again, I know no counter example. 
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A constructive proof is to order the triple we seek as x<y<z and 

note 
z

x
=

x + ∆α

x
> 2  where ∆α  is the larger of the Charlotte pair. 

Evaluating 
∆β

2 − 1
 gives us an irrational number greater than the integer x 

we seek. Similarly using the smaller index ∆1  a number less than y is 

given by 

∆ β∑

2 − 1
. Thus for the Charlotte pair 1,2 we obtain 2.414 and 

4.828. The integer range is therefore 3,4 and thus bracketing the values 

sought: 3,4. This supposes we already know a good approximation for 

2 . A crude approximation would say it is lower than 1.5 but higher than 

1.4. Then for any Charlotte pair the range is limited to 
1

0.5
= 2 <

2

0.4
= 4.5  a 

span allowing two and only two adjacent Rosie values for a Charlotte 

pair. This certainly suggests that the hypothesis is true. 

The Rosie pair corresponding to a Charlotte pair is the first term in 

both sequences arising from indices 1 and 2 . For higher Charlotte pairs 

the common term can appear later. The next table shows the sequences 

for indices 8 and 9.  The lemma also follows from the unique solutions 

we have given for x,y as functions of the two indices. 

 

Table 4. Sophie Triples for a Charlotte pair 8,9 

Index 8 Index 9  Index 49 Index 50 

5,12,13 8,15,17  16,63,65 11,60,61 

21,20,29 20,21,29  36,77,85 39,80,89 

45,28,53 *26,27,45  60.91,109 *75,100,125 

77,36,85 56,33,65  120,119,169 119,120.169 

* reducible. Common terms bold. The reader might explore the 

sequence for 288 and 289. A further Charlotte pair can be found near 

1680. Note that the pairs are alternatively odd-even and even-odd. Is 

there a proof? 

If we have found a Charlotte pair of adjacent indices we may write 

down explicitly the corresponding pair of adjacent x,y.  We have 

 x + ∆1 = 2n(n + δ 1) + ∆1 = z = y + ∆2 = 2nδ1 + ∆ 1+∆2  

so that 2n
2 = ∆2 = 2δ2

2  and  x = 2δ1δ2 + ∆2 , y = 2δ1δ2 + ∆1  and thus 

adjacent. 
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Square root of Two 

A Charlotte pair of adjacent indices provides an approximation for 

2  with the attraction of precise error bounds. If we order the common 

triple x<y<z then z/x> 2 >z/y, Thus the paradigm gives the crude 

approximation that 5/3> 2 >5/4 with error bound is 5/12=0.4166666 and 

the arithmetic mean is 1 2/3. Table 5 gives the first few Charlotte and 

Rosie pairs with increasing accuracy of the approximation .The 

approximation rapidly gains accuracy as we move to larger Charlotte 

pairs. 

 

Table 5. Approximations for 2  

Charlotte 

Indices 

Rosie Triple Error 

Width 

Arithmetic 

Mean 

Error % 

1,2 2,4,5 0.4166 1.45833 3.12 

8,9 20,21,29 0.179 1.41547 0.8928 

49,50 119,120,169 0.011835 1.41425 0.00263 

288,289, 696,697,985 0.00203045 1.414215 0.0001 

 

Thus our final Charlotte pair gives six figure accuracy in 

estimating the square root of two (1.41421356…) The reader might like 

to find other approximations for say 3 and 5 . For example, we cannot 

have y/x=2 in a Sophie triple or else z/x= 5 . If y/x>2 then z/x is an 

upper bound and vice versa. 

Can we prove that successive Sophie triples with adjacent 

Charlotte pairs of indices can be predicted by use of the ratio 2 + 1  

(known in the ‘trade’ as the silver ratio
3
)? Indeed we can but I point out 

that this supposes we have an adequate approximation for the square root. 

Thus we go on to discuss the Pell recurrence relation that gives such 

triples explicitly. 

 

                                         
3
 cf the golden ratio of architecture, ( 5 + 1) / 2  which considered 

the desirable ratio for width to height of a building façade, and the 

‘bronze’ ratio of modern paper sizes 2 :1  so that A3 size paper divides 

equally into A4 with the same aspect ratio. 
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Charlotte Pairs and Euler’s Construction4 

We have seen that the silver ratio J = 2 + 1 plays a role in 

predicting successive Charlotte pairs of adjacent indices. Euler’s work on 

triangular numbers that are also square numbers shows why this should 

be so and gives explicitly each Charlotte pair. 

A triangular number τ k  is the sum of the integers from 1 to n: 

τ k = n
1

k

∑ . 

For example, the number of red snooker balls in their triangular 

frame with five rows is τ 5 = 15 . In the Christmas carol, the Twelve Days 

of Christmas, the singer successively gets τ n  presents daily, from n=1 to 

n=12 or a total of 364 presents from their true (and presumably rich) love. 

From the linearity we see that this sum is given by τ k = k(k + 1) / 2 . The 

figure shows the first eight triangular numbers. Our interest is in those 

triangular numbers that are also perfect squares and the figure shows the 

first two: 1 and 36. 

 
Figure 4: Triangular numbers and the first two common square numbers 

 

That is, we are looking for successive Charlotte pairs that satisfy 

the index form ∆k (∆k + 1) = 2δ 2δo

2  which may be written as 

                                         
4
 Leonard Euler 1707-1785. 
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1

2
∆k (∆k + 1) = δ 2δo

2  

On the right is a perfect square of integers while on the left we 

recognise the triangular number τ ∆ .  Euler’s formula for the leading index 

of successive pairs is that 

 ∆k =
J

k − J
*k

2








2

 

Here the complimentary silver ratio J * = 2 − 1  and consequently 

J *J = 1 .  It follows that the adjacent index is given by 

    ∆k + 1 =
J

k + J
*k

2








2

 

Are these indices integer despite the division by 2? At the special 

case k=0 we have ∆0 = 1  with the Charlotte pair 0,1 corresponding to the 

degenerate Sophie triple 0,1,1. This satisfies Pythagoras but degenerates 

to a line, useful in the subsequent discussion of Pell numbers – see Figure 

5. 

At k=1 we have ∆1 =
2

2







2

= 1  with Charlotte pair 1,2 and next 

∆2 =
4 2

2











2

= 8  giving indices 8 and 9. We see that not only do alternate 

terms in the expansion cancel, leaving a doubling of the uncancelled 

terms and integer index, but we are correctly reproducing the observed 

Charlotte pairs. 

 

We now have 

  
1

2
∆k (∆k + 1) = τ ∆ =

J
2k − J

*2k

4 2








2

 

with successive values k=0: 0, k=1: 2, k=2: 36, etc. corresponding 

to Charlotte pairs (0,1), (1,2) and (8,9). We have already shown the 

formula to be integer and thus a square number. But note that the 

expansion of the silver ratios to even powers leads to cancellation of even 

terms, leaving odd terms with a common factor of 4 2  to cancel the 

denominator. 

A related expression for the lower index of order k so that 

τ k = 1

2
∆ k (∆k + 1)  is 
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∆k = 1

4
(3 + 2 2)k + (3 − 2 2)k − 2( ) 

yielding the sequence 1, 8, 49,… 

Finally we may see the origin of our observation of the silver ratio 

(squared) in successive indices and corresponding hypotenuse. We have 

J * < 1  so that for large k we have ∆k = J k − J *k( )
2

→ J 2k  and successive 

indices increase as J 2 . 

Strictly speaking we have not proved that there are no other 

Charlotte pairs not given by the Euler formula but it gives all we have 

observed. 

 

Pell Numbers and Recurrence Relation 

A long established sequence known as Pell numbers provides a 

slightly different prediction of Sophie Triples and an approximation to 

the square root of two. The numbers are generated in pairs starting 

d0 = 0, z0 = 1  and then computing from 

  dn+1 = dn + 2zb+1, zb+1 = zn + 2dn  

Thus we have successively 

  

d1 = 2, z1 = 5

d2 = 12, z2 = 29

d 3= 70, z3 = 169

d4 = 408, z4 = 985

d5 = 2378, z5 = 5741

 

 increasing as the silver ratio J squared. 

It is seen that the z-Pell numbers are the hypotenuse of our Sophie 

triangles. The d-numbers are the Dickson parameter, our term 2δoδ  and 

consequently the difference z-d gives the sum of the indices 2∆ + 1 . We 

may therefore readily obtain the complete triple at each stage 

x = d + ∆, y = d + ∆ + 1  or, alternatively, y = d + ∆, x = d + ∆ + 1.  

or x, y =
z + d ± 1

2
 

This recurrence relation might be considered more convenient in 

giving the hypotenuse than the binomial expansion. 
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The starting numbers for this series, 0,1, correspond to the zeroth 

or degenerate Sophie triple of 0,1,1 satisfying Pythagoras with two right 

angles of course. 

 

 

Figure 5: The degenerate triangle 

Charlotte: “It doesn’t look like a triangle to me, Grandpa.” 

Pythagoras: “Ah, but 0,1,1 satisfies Pythagoras  

and is really the first Sophie Triple.” 

 

An explicit expression for x,y comes with a change of notation 

using the single recurrence relation 

P0 = 0, P 1= 1,  else Pn = 2Pn−1 + P b−2  

Thus we have  0,1 2,5,12,29,70,169,… Then the Sophie triples are 

given by 
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x = 2P n Pn+1

y = Pn+1

2 − Pn

2
 

so that from Pythagoras 

 z = P2n+1 = Pn+1

2 + Pn

2  

and   d = P2n = (Pn+1

2 − Pn−1

2 ) / 2  

Thus for n=1 we have 4,3,5, our first Sophie triangle. For n=2 we 

have 20,21,29, m=3 gives 120,119,169, etc. Of course the proof of this 

convenient alternative approach turms on the same binomial expansion of 

the silver ratio. Substitution shows that after two applications of the 

recurrence relation Pn+2 = 5Pn + 2Pn−1  consistent with the J 2  operation 

5.828… 

In principle, the binomial expansion allows us to find a high-order 

triple directly without going through every lower stage of the Pell 

recurrence relations but modern computers diminish that advantage. Is 

this the best approximation route to 2 ? Perhaps Newton’s more general 

algorithm is as good as any. 

Seen from the perspective of a negative Dickson parameter D<0, 

we see the four pairings ±x ± y  yield two values of Γ , corresponding to 

right- and left-handed triangles. Thus our paradigm triple 3,4,5 yields 

Γ = 1 and 7 . 

 

Admissible triples 

 From the Dickson analysis we may find admissible values for x, y, 

z. For the odd side 

 D + ∆o = δo(2δ + δo ) . 

Thus admissible values are given by 2n+1: (3,4,5);(5,12,130)), 

(7,224,25), (9,40,41)… 

 For the even sided 

 D + ∆e = 2δ (δ + δo ) . 

This has a factor of 4.  Values are given by n: (3,4,5), (8,115,17), 

(5,12,13)… 

 Then the sum of odd and hypotenuse is given by 

 2D + 2∆o + ∆e = 2(δ + δo )2  

and thus by 2n2  if  we include the degenerate case : (0,1,1), (3,4.5). 

(5,12,13), (8,15,17)…  
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 Then the sum of the even side and hypotenuse is given by 

 2D + 2∆o + ∆e = 2(δo + δe )2 . 

These last two results are in the form of even and odd indices, 

which, with the next, will be relevant studying negative sides.  

 Finally whereas the difference of odd and even sides is in Γ , the 

sum is 

 2D + ∆ l + ∆e = (2δ + δo )2 − ∆o  

and this again is in the form of a Γ − value. 

 We illustrate this with our paradigm in the table. 

 

Table 6. Reversed sides 

x y, z ψ  D ∆e  ∆o  Λ  Γ  

3,4,5 1,1 2 2 11 1  

-3,4,5 1,2 -4 8 1 7  

3,-4,5 3,1 -6 2 9 -7 7 

-3,-4,5 3,2 -12 8 9 -1 1 

 

 Note that the Dickson factor is mutative if either or both sides are 

taken negative. We will see the origin of this under Pell precursors. And 

we note that if both sides reverse  Γ  is unchanged. 

 

Pell Precursors 

Pell numbers can readily be traced backwards and if taken far 

enough lead to negative values for x,y. The question is then whether these 

are different triples? Clearly a change of sign for x, y, z does not change 

Pythagoras but –x, y, x is a reflection rather than a rotation and giving a 

different triangle, rt − handed ↔ left − handed ,  we might expect a different 

Γ . 

The table shows four successive precursions. 
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Table 7. Pell precursors at Γ = 1 

D,z -12, 5 -2, 1 0, 1 2, 5 

∆o,∆e  8, 9 1, 2 0, 1, 1, 2 

x,  y ,z -3, -4, 5 -1, 0, 1 0, 1, 1 3, 4, 5 

 

We have the degenerate triangle as before. All the triples satisfy 

Pythagoras but is -3,-4,5 a different triangle to 3,4,5?  I would say no 

since the difference can be seen as a rotation through Π  by the observer. 

Correspondingly they have a common Γ = 1. 

 

Table 8. Pell precursion at Γ = 7  

D, z -234, 97 -40 ,  17 -6 , 5 4, 13 

∆o,∆e  162, 169 25, 32 2, 9 1, 8 

x, y, s -65, -72, 97 -8, -15, 17 3, -4, 5 5, 12, 13 

D,  z -176, 73 -30, 13 -4, 5 6, 17 

∆o,∆e  121, 128 18, 25 1, 8 2, 9 

x, y, z  -55, -48, 73 -5, -12, 13 -3, 4, 5 8, 15, 17 

 

 There are two curiosities in Table B. We have triples -3, 4, 5 and 

3, -4, 5 but I argue these are not the same triangles as 3, 4, 5 since they 

come from reflection not rotation and are thus distinct. Then in the 

Dickson quadrant (where all four quadrants are the same) Γ = 7  has two 

recursion traces, connected by the rotation operator. But with Pell these 

sequences cross over. 

 

Table 9. Pell precursors at Γ = 17  

D,  z -736, 305 -126, 53 -20, 13 6, 25 

∆o,∆e  512, 529 81, 98 8, 25 1, 18 

x, y, z -207, -224, 305 -28, -45,  53 -5, 12, 13 7, 24, 25 

D, z -330,137 -56,25 -6,13 20,53 

∆o,∆e  225,242 32,49 1,18 8,25 

x y, z -105,-88,137 -24,-7,25 -5,12,13 28,45,53 
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 Again, -5, 12; 13 is not the same triangle as 5; 12, 13 and has a 

different Γ . Both crossover triples have related Γ  values 7. 

Table 10. Pell precursors at Γ = 119  

D, z -6432, 26665 -1102, 461 -180, 101 22, 145 

∆o,∆e  4489, 44608 722, 841 81, 200 2, 121 

X, y, z -1943, -18242665 -261, -380, 461 -99; 20, 101 24, 143, 145 

D, z -2460, 1021 -418, 185 -48, 89 130, 3349 

∆o,∆e  1800, 1681 242,361 9, 128 50, 169 

X, y, z -660, -779, 1021 -176, -57, 185 -39, -80, 89 180, 299, 349 

D, z -4838, 2005 -828, 349 -130, 89 48, 185 

∆o,∆e  3481, 3362 529, 648 50, 169 9, 128 

x, y, -1357, -1476, 

2005 

-299, -180, 349 -80, 39, 89 57, 176, 185 

D, z -1850, 769 -312, 145 -22, 101 180, 461 

∆o,∆e  1250, 1369 169, 288 2, 121 200, 81 

X, y, z -600, -481, 769 -141, -24, 145 -20, 99, 101 261, 380, 461 

 

We see in Table 10 that Pell precursion links the two rotation 

related chains at 119 in the Dickson quadrant. At the cross-over with only 

one of the triple negative, we have a triangle that with positive sides 

would have Γ = 479 , 79 and 41. 

Pell precursion then yields negative values for one or both of x and  

y. Our earlier results for the sum of two sides the change in indices on 

reversing the relevant sides. The change in x+y gives the new Γ  but not 

the indices since this is multi-valued. 

 

Pell Amplitude Convergence 

For the sequence of Sophie triples having Γ = 1  we showed that 

successive values of the hypotenuse z increase with an amplitude ratio 

that approaches the square of the silver ratio J, using Euler’s formula for 

Pascal’s triangular numbers.  Table 1 shows the first few Pell numbers 

starting from the degenerate Sophie triple (0,1,1) reproducing the 

sequence for Γ = 1  and showing convergence towards J=2.414…. 
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Table 11. Discrepancy amplitude ratios 

Pn |1 / Pn  1/0 2/1 5/2 12/5 29/12 70/29 

Value ∞  2 2.5 2.4 2.417… 2.41379… 

 

That is, for Γ = 1, the lower index is given explicitly by 

 ∆k =
J

k − J
*k

2








2

. 

With increasing k terms in J dominate. 

 

This result may be generalised for any Γ  using Pell recursion with 

successive Pell numbers having an amplitude ratio that converges toward 

J. 

Under Pell recursion the Dickson factor D and the hypotenuse z 

increase and we can speak of the amplitude factor in a complete cycle. 

Numerical studies for Γ =1, 7 (two branches), 17, 23, 31, 41, 47 and 49 

show that the successive values of the amplitude ratio approach 5.83… or 

the square of J = 2 + 1 with JJ* = 1. To show the convergence we start with 

two valid values from a triple, P0 = D  and P1 = z .Then write  

z = P1 = J + ε( )D = J + ε( )P0   

where ε  is not necessarily small. After a half cycle 

  
P2 = (2J + 1)P0 + 2εP0 = 2J + JJ

*( )+ 2ε( )P0

= (J
2 + 2ε )P

0

 

so that the discrepancy reduces by the relative factor 2/J=0.8284… 

After a complete cycle we have 

 P3 = (J
3 + 5ε)P0  

 and we have a reduction 5/ J 2 = 0.85786… 

Further coefficients of ε  are 12, 29, 70, 169… and we recognise 

the Pell numbers for our paradigm Sophie triple , starting from the 

degenerate 0, 1. 

Table 2 gives starting values for the first 8 values of Γ We have 

shown that the coefficients of ε  converge with a semi=amplitude ratio 

towards J. Thus the convergence is true for all Γ . 
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Table 12. Starting values of z/D and ε . 

Γ  1 7 7 17 23 31 41 47 

z/D 5/2 13/4 17/6 25/6 65/24 41/8 89/30 157/60 

ε  0.09679 0.83579 0.41491 1.752443 0.284120 2.710787 0.452453 0.252403 

 

Generalised  Recursion 

The Pell recursion is readily generalised. Write 

  Ln+2 = aLn + bLn+1 . 

The semi-amplitude ratio converges towards G =
1

2
b

2 + 4a + b( ). 
Put G∗ = G − b  so that GG∗ = a . For example if a=2 and b=1, then G=2 and 

the coefficients of the ε  tern are 0, 1, 1, 3, 5, 11, 21, 43, 85… and the 

semi-amplitude ratio converges to 2. We can readily show that if we start 

L0 = a, L1 = aG  then Ln = aG
n . I look to prove convergence from a closed 

form as before. 

I do not know yet of any use of this generalised recursion. 

To address consider the discrepancy coefficients starting with 

 L0 = 0, L1 = 1  

We obtain 

 
L2 = b, L3 = a + b

2

L4 = 2ab + b
2 , L5 = a

2 + 3ab
2 + b

3
 

Thos 

L3 / L1 = a + b
2  and L5 / L3 =

a
2 + 3ab

2 + b
3( )/ a + b

2( )

= a + b
2 +

ab
2

a + b
2

 

 Now  

 

 

G
2 = 1

4
4a + 2b

2 + 2b
2 1 +

4a

b
2









 ; 2a + b

2  

expanding the radical for small a. 

Every cycle can be taken to start afresh. Then if a>0 the 

ε − discrepancy decreases under L-recursion. 
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A Lemma 

 Allowing negative sides x,y gives a lemma. Not only is the 

magnitude of the difference of x and y a member of Γ  but so is the 

magnitude of their sum. Thus the sequence (0,1,1), (3,4,5), (20,21,29), 

(119,120,169),… yields 1,7,41,239,.. whilst (5,12,13) gives 17,103,… 

and (8,15,17) gives 27,… all satisfying the mod 8 test. Proof: if x,y,z is a 

valid triple so are (±x,,±y, z) . But what is a difference in two cases is a 

sum in the other two. Q.E.D. 

 This is an interesting but not such a powerful result. It is not the 

sum but the difference of x, y that is invariant under recursion. 

 

The numbers x, y and z 

The extension to negative sides allows us to say what values may 

be and are taken by the sides x and y in a triple. We know that not only x-

y but also x+y lie in Γ  and both satisfy the modulo  8 test. Thus the sum 

(x+y) + (x-y) gives 

2x(mod8) = 0 or ± 2  

If we include the degenerate triple 0,1,1 this tells us that all odd 

numbers are allowed.  But even sides are restricted: x(mod 8) ≠ ±2 . Thus 2 

and 6 are absent. 

Just because a number is allowed does not prove it present but we 

may easily show this to be true. From Dickson for odd sides with δo = 1  

we have x = D + ∆o = 2δ + 1  and thus, allowing the degenerate case, all odd 

numbers appear along the vertical axis.  

For even values put δ = 1  so that x = D + ∆e = 2δo + 2 . Then along the 

horizontal axis the values are x = 2δo + 2 = 4n  successively 4,8,12,16,… all 

the numbers satisfying 2z(mod 8) = 0 . All permitted sides z and y are 

present. There are no barred values such as 2, 6, 10 etc. 

We can get a similar result from the basic relation x
2 + y

2 = z
2 . If y 

is odd then y(mod8)=z(mod8)=1 and x(mld8)=0. 

We see that the sets x and y are full: all allowed values are present. 

This is not the case or the set of z-values. The figure shows z-values near 

the origin of the Dickson quadrant. 
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Table 13. Hypotenuse values 

4 41 65 

3 25 X 73 

2 13 29 53 

1 5 17 37 65 

ψ = (δo,δ )  1 3 5 7 

 
We add 1 to these values from the degenerate triangle 0,1,1. We 

have z = D + ∆o + ∆e = 2δoδ + δo

2 + 2δ 2  so that as we go outwards z increases. 

Thus 3, 7, 9 and 11 are absent from the set of hypotenuse. 

 It helps to note that from Dickson we have 

z = 2δoδ + 2δ 2 + δo

2 = (δ + δo )2 + (δ )2 . Thus z = m
2 + n

2  where m and n are 

integers of opposite parity, odd and even.  How curious that this has the 

same form as our original triple z
2 = x

2 + y
2  Thus we have 

z(mod 8) = m
2 (mod8) + n

2 (mod8) = 0 / 4 + 1 = 1 or 5 . 
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Table 14. z-values z = (δo + δ )2 + δ 2  

20 841 929 X 1129 1241 11361 1489 X 1769 1921 

19 761 845 9337 1037 1145 1261 1385 1517 16557 1805 

18 685 X 853 949 X 1165 1285 X 1549 1693 

17 513 691 653 847 965 1073 1189 1313 1445 1585 

16 545 417 497 785 991 985 1097 1217 1345 1481 

15 481 X X 709 X 901 1009 X 1249 1381 

14 421 485 557 X 725 821 925 1037 1157 1285 

13 365 425 493 569 653 745 X 973 1069 1193 

12 313 X 433 505 X 673 769 X 965 1105 

11 263 315 377 445 521 X 697 797 905 1021 

10 221 269 X 389 461 5541 629  X 829 941 

9 181 X 277 3337 X 481 565 X 757 865 

8 145 18511 233 289 3353 425 475 593 589 793 

7 113 149 193 X 305 373 449 533 625 725 

6 85 X 157 205 X 325 397 X 565 661 

5 61 89 X 169 221 281 349 X 509 601 

4 41 65 97 137 185 241 305 377 475 545 

3 25 X 73 109 X 205 265 X 409 493 

2 13 29 53 85 125 173 229 293 365 445 

1 5 17 37 65 101 145 197 257 325 401 

ψ =

(δ
o
,δ )

 
1 3 5 7 9 11 13 15 17 19 

 

We note occasional duplications such as 65 at 7,1 and 3,4. 

z-lacunae 

 The following values are missing from the quadrant: 

Mod8=1:    9, 33, 49, 57,81 ,89, … 

Mod8=5:   21, 45,  69,7783, ... 

These values satisfy the test modulo 8 but cannot be written in the 

form z = (δo + δ )2 + δ 2 . 
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Thus 9 cannot be represented as m2 + n2  without using m=0 which 

in turn gives a reducible triple 0,9,9. 

 In the range z<900; there are some 225 valid values but only 

some 150 cells of which say 20 are reducible or duplicates. Thus z is 

some 40 % sparse. 

So we see that whereas x and y are limited by the test modulo 8 

and all admissible values are present, this test is insufficient for the 

hypotenuse z. 9 satisfies the test but cannot be written  m2 + n2 . Rather we 

should employ the constructive proof that z = m
2 + n

2  where m and n are 

integers of alternate parity, odd and even. 

I have recently been introduced to the work of Vella, Vella and 

Wolf (henceforth VVW). 

For example, in the triple 120, 121, 169 we have 169 a square 

number. This can only be so if that number is itself an hypotenuse: 5, 12, 

13. 

Can z be the hypotenuse of more than one triple? This calls for 

more than one pair z = m
2 + n

2 . VVW show that this turns on the number 

of prime factors k of z and is given by 2k −1 . Thus z=5 is unique, ignoring 

negative sides. 65 = 5 × 13  has two triples 16,63,65 and 3,56,65. Similarly 

z = 145 = 5 × 29  has two triples; can you find them? But z = 169 = 132  has 

only one prime factor and occurs uniquely at 120,121,169. And this 

factor 13 itself appears uniquely in 5,112,13. 

Then z = 3485 = 5 × 17 × 41 has four triples: m n=59,2; 58,11;  53, 

26; 46, 37 and nowhere else. Again, readers might like to find and check 

another case. 
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The Lewins Conjecture 

We recollect the values found for Γ = Λ = ∆o − ∆e  Table x. 

Table 15. Λ  values as a function of δ / δo  

20 799 791 X 751 7719 679 631 X 511 439 

19 721 713 697 673 641 601 553 497 433 X 

18 647 X 623 599 X 527 479 X 359 2287 

17 577 569 553 529 497 457 409 353 X 217 

16 511 503 487 463 431 391 341 287 223 151 

15 449 X X 401 X 329 281 X 161 89 

14 391 3183 367 X 311 271 223 167 103 31 

13 337 329 313 289 257 217 X 112 49 -23 

12 287 X 263 239 X 167 119 X -1 -73 

11 241 233 217 193 161 X 73 17 -47 -119 

10 199  191 X 151 119 79 31 X -89 -161 

9 161 X 137  113 X 41 -7 X -127 -199 

8 127 119 103 79 47 7 -41 -97 161 

7 × 23  

-122 

7 +8 89 73 X 17 -23 23-71 -127 -191 -263 

6 71 X 47 23 X -49 -97 X -127 -289 

172
 

5 49 41 X -1 -31 -71 hotvella X -239 -311 

4 31 23 7 -17 -49 

−72
 

-89 -137 -193 -2557 -329 

7 × 47  

3 17 X -7 -31 X -103 -151 X -271 -343 

73
 

2 7 -1 -17 -41 -73 -113 -161 

- 7 × 23  

-217 

−7 × 31 

-281 -353 

1 1 -7 -23 -47 -79 -119 

−7 × 17  

-167 -223 -284 

7 × 41  

-359 

ψ =

(δ ,δ
o
)

 
1 3 5 7 9 11 13 15 17 19 

X co-factor     Bold: recursor  

 

We see that in general there are starting values in the upper and 

lower segments ±Λ  followed by twin traces in the central wedge. 
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Exceptions include Λ = 1  followed by a single trace and, for example, 17 

and 119 = 17 × 7  which have double starts. 

We see that in the range studied, the Γ − values are limited to those 

primes p (all odd) satisfying p(mod 8) = ±1 or products of such primes. 

Our conjecture then is in two parts: 

1. The set Γ  is limited to prime factors and their products 

satisfying p(mod 8) = ±1. Thus 7x7=49 is valid but not 3x3 even though 

9(mod8))=1. Since all products of valid primes satisfy the test we have 

Γ(mod 8) = ±1  if the conjecture is valid. 

 

2. That every possible product of valid primes can indeed be 

found in the set Γ . That is, we have a set Λ  

 Λ = ± pn

m
n=1
,=1

∞,∞

∏  

where p satisfies modulo 8= ±1  and consequently Γ(mod 8) = ±1 . 

I can offer a proof for the first part as follows. Our equation is 

  Λ = ∆e − ∆o = 2δ 2 − δo

2  

where δ ,δo  are co-prime integers and δo  is odd. 

Such an equation is the proper subject of Gauss’s quadratic 

reciprocity theorem, a deep theorem at the heart of formal algebra.
5
 

Witness to this complexity is the claim that there are over 200 proofs of 

the theorem, including one found on Gauss at his death. Fortunately there 

is an easier proof. 

The odd series ∆o = 1,9,25,...  has a general term 2n[1( )2
 and hence a 

stepwise increment 2n + 1( )2
− 2n − 1( )2

= 8n . Thus ∆o(mod8) = 1 . For 

∆e(mod 8) = 2δ 2 (mod8)  the odd integers therefore contribute 2 and the even 

give 2(2n)2 = 8n
2  and contribute zero. Thus 

  Γ(mod8) = (2 or 0)-1= ± 1  

We have proved that all primes p in the set are limited to 

p(mod 8) = ±1.We still must show that such an invalid prime cannot be a 

factor of any member of the set even though, for example, 02  satisfies the 

modulo 8 test. 

To do this, we turn to the q-values or residuals modulo p. At any 

multiple of p the residual is zero but this leads to a false, reducible 

                                         
5
 See for example  http://www.math.uga.edu/~pete/thuelemmav3.pdf 
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solution. Between successive false solutions the even index has p-1  

values but from the symmetry only half can be distinct: 

n
2 p−n2 (mlsp) = ( p − m)2 (mod p)  leaving (p-1)/2 for the odd-index. Thus the 

two fields can indeed be disjoint. Thus for an invalid p=5 the full series 

gives the field 2,3,3,2  and the odd series gives 1,4. For p=7, valid, we 

have 2,1,4,4,1,2 and 1,2,4, the first disjoint and the second joint. 

But we have shown that if p is an invalid prime it cannot appear in 

Γ  so that the two fields are indeed disjoint and hence we have proved that 

if p(mod 8) ≠ ±1 it cannot appear as a factor in the set. 

We have checked the harmonics up to Γ = 49 . All are present. 
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Table 14. Harmonics up to R=2500
6
 

Γ  Factors ψ =

(δo,δe )

 

Γ  Factors ψ =

(δo,δe )

 

Γ  Factors ψ =

(δo,δe )

 

1 1 1,1 17 17 5,2 23 23 5,1 

7 7 1,2 119 17 × 7  19,6 391 23 × 17  21,5 

49 72  9,4 833 17 × 72  33,2 161 23 × 7  12,2 

343 73  19,3 289 172  19,6 1127 23 × 72  37,11 

2401 74  51,10 2023 172 × 7  45,1 529 232  27,10 

31 31 7,3 41 41 ,2 47 47 477,1 

713 31 × 23 29,2 1271 41 × 31 27,7 1927 47 × 41 45,1 

527 31 × 17  12,1 943 41 × 23 31,3 1457 47 × 31 53,26 

217 31 × 7  25,2 697 41 × 17  27,4 1081 47 × 23 33,2 

1519 31 × 72  39,1 287 41× 7  17,1 799 47 × 17  31,9 

961 312  33,8 2009 41× 72  47,10 329 47 × 7  23,10 

   1681 412  59,30 2303 47 × 72  53,5 

      2209 472  51,4 

 

                                         
6
  For prime numbers:  

http://primes.utm.edu/lists/small/100000.txt 
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Γ  Factors ψ =

(δo,δe )
 

Γ  Factors ψ =

(δo,δe )

 

Γ  Factors ψ =

(δo,δe )

 

71 71 11,5 73 73 9,2 79 79 9,1 

2201 71 × 31 49,10 2263 73 × 31 61,27 2449 79 × 31 57,29 

1633 71 × 23 51,22 1679 73 × 23 41,1 1817 79 × 23 45,4 

1207 71 × 17  35,3 1241 73 × 17  37,8 1343 79 × 17  55,22

9 

497 71 × 7  23,4 511 73 × 7  23,3 553 79 × 7  25,6 

89 89 11,4 97 97 15,8 103 103 11,3 

2047 89 × 23  47,9 2231 97 × 23
 

53,17 2369 103 × 23 49,4 

1513 89 × 17  39,2 1649 97 × 17
 

41,4 1751 103 × 17  43,7 

623 89 × 7  25,1 679 97 × 7  27,5 721 103 × 7  27,2 

113 113 11,2 127 127 15,7 137 137 13,4 

1921 113 × 17  47,12 2159 127 × 17
 

47.5 2329 137 × 17  49,6 

791 113 × 7  29,5 889 127 × 7
 

31,6 959 137 × 7   

2,1 

151 151 13,3 167 167 13,1 191 191 17,7 

1057 151 × 7  33,4 1169 167 × 7
 

37,10 1337 191 × 7  37,4 

199 199 19,9 223 223 15,1 233 233 25,14 

1393 199 × 7  39.9 1561 223 × 7
 

43,12 1631 233 × 7  41,5 

241 241 32,10 257 257 35,22 263 263 19,7 

1687 241× 7  43,9 1799 257 × 7
 

43,5 1841 263 × 7  43,2 

271 271 17,3 281 281 17,2 311 311 19,5 

1897 271× 7  45,8 1967 281 × 7
 

47,11 2177 311 × 7  53,4 

313 313 21,8 337 337 25,12 353 353 21,2 

2191 313 × 7  47,3 2359 337 × 7
 

51,11 2471 353 × 7  53,13 
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Γ  ψ  Γ  ψ  ψ Γ  ψ  Γ  ψ  Γ  ψ  

359 19,1 367 23,9 383 25,11 401 23,8 4009 21,4 

431 23,7 433 21,2 439 21,1 449 31,16 457 23,6 

463 25,9 479 23,5 487 27,11 503 3+,13 521 23,2 

569 31,14 577 33,16 599 29,11 601 27,8 607 25,3 

617 25,2 631 27,7 641 29,10 647 35,17 673 31,2 

719 31,11 727 27,1 743 29,7 751 33,13 761 31,10 

7669 29,6 809 294 823 29,3 839 29,1 857 37,16 

863 31,7 881 31,2 887 35,13 911 31,5 919 37,15 

929 31,4 937 35,12 953 31,2 967 43,41 977 37,14 

983 37,11 991 33,7 1009 39,16 1031 37,13 1033 41,18 

1039 33,25 1049 43,20 1063 35,9 1087 33,1 1097 35,8 

1103 43,17 1129 39,14 1153 35,6 1193 35,4 1201 37,7 

1217 35,2 1223 35,1 1231 41,15 1249 51,26 1279 39,11 

1327 47,21 1361 37,2 1367 37,1 1399 43,15 1409 47,20 

1423 39,7 1433 49,22 1439 49,11 11447 45,17 1471 39,5 

1481 41,10 1487 47,19 1489 39,4 15543 51,23 1553 41,8 

1559 51,25 1567 55,27 11601 49,20 1607 43.11 1609 41,6 

1657 53,24 1663 44,3 1697 47,16 1721 43,8 1753 49,18 

1759 47,15 1777 45,6 1783 45,11 1801 51,20 1823 49,17 

1831 43,3 1817 43,4 1871 47,13 1879 51,19 1889 49,16 

1913 59,28 1951 49,15 1993 45,4 1999 57,25 2017 45,2 

2039 361,29 2063 449,13 2081 47,8 2087 25,8 2089 51,16 

2111 47,7 2113 49,12 2129 59,26 2137 47,6 2143 55,21 

2153 61,28 2161 53,118 2207 47,1 2239 47,9 2273 49,8 

2281 57,22 2287 63,29 2297 53,16 2311 67,33 2351 49,5 

2377 55,18 2383 49,3 2393 49,2 2399 49,1 2417 53,14 

2423 59,23 2441 67,32 2447 55,17 2473 51,8  e.o.e 

 

Thus the conjecture is valid up to R=2500. 
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We have no rigorous proof for the second part of our conjecture 

but we see it supported as far as the table goes. A constructive proof 

would be ideal but an attempt to show every number satisfying the 

modulo 8 test will fail; 15 has no solution.  

A computer program to extend the range might go as follows: 

Select the range R, say one million; 

Find all valid primes p by the usual sieve algorithm up to R , say 

1000; 

Extend the table ψ = (δ ,δ
o
)  to δo

2 = R ; 

Construct all product of the primes p up to R; 

Check for the occurrence of each harmonic between vertical 

columns in the lower wedge from δo = m  where m is odd and just satisfies 

m2 > Γ  to δo = n  where b odd just satisfies (n − 1)2 > 2 + Γ . 

I am delighted that Alister Perrott has written such as programme 

checking the occurrence of x+y, which can be shown to be an equivalent 

set. He had validated my hand results to 2500 and extended them to 

5,000,000. The programme runs on a PC and took some 10 hours to reach 

5,000,000. He has kindly made the programme availabled at: 

http://www.shelaghlewins.com/other_stuff/triangles_perl_script.txt 

 

Conclusions  

Our journey through Pythagorean triples has seen rich mathematics 

and famous mathematicians. Oft have I travelled in the realms of gold. 

We met Euclid, Euler, Gauss, Pascal, Dickson and above all, Pythagoras 

on the way. We have shown the equivalence of the Dickson and Pell 

sequences , the invariance of Γ  and the convergence to the silver ratio 

J = 2 + 1. We have achieved a Fourier decomposition of the set of those 

numbers representing the short sides of our triples into prime factors 

satisfying the modulo 8 test. 

Fancifully, eight makes me think of the musical scale. If indeed all 

possible fundamental primes, their overtones and harmonics are present 

in the set Γ , may we say that it rings with the music of the spheres? 
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